690 research outputs found

    Postcopulatory sexual selection and the evolution of shape complexity in the carnivoran baculum

    Get PDF
    The baculum is an enigmatic bone within the mammalian glans penis, and the driving forces behind its often bizarre shape have captivated evolutionary biologists for over a century. Hypotheses for the function of the baculum include aiding in intromission, stimulating females and assisting with prolonged mating. Previous attempts to test these hypotheses have focused on the gross size of the baculum and have failed to reach a consensus. We conducted three-dimensional imaging and apply a new method to quantify three-dimensional shape complexity in the carnivoran baculum. We show that socially monogamous species are evolving towards complex-shaped bacula, whereas group-living species are evolving towards simple bacula. Overall three-dimensional baculum shape complexity is not related to relative testes mass, but tip complexity is higher in induced ovulators and species engaging in prolonged copulation. Our study provides evidence of postcopulatory sexual selection pressures driving three-dimensional shape complexity in the carnivore baculum

    Effects of Measurement back-action in the stabilization of a Bose-Einstein condensate through feedback

    Full text link
    We apply quantum filtering and control to a particle in a harmonic trap under continuous position measurement, and show that a simple static feedback law can be used to cool the system. The final steady state is Gaussian and dependent on the feedback strength and coupling between the system and probe. In the limit of weak coupling this final state becomes the ground state. An earlier model by Haine et. al. (PRA 69, 2004) without measurement back-action showed dark states: states that did not display error signals, thus remaining unaffected by the control. This paper shows that for a realistic measurement process this is not true, which indicates that a Bose-Einstein condensate may be driven towards the ground state from any arbitrary initial state.Comment: 1 Tex, 4 PS pictures, 1 bbl fil

    Canonical form of master equations and characterization of non-Markovianity

    Get PDF
    Master equations govern the time evolution of a quantum system interacting with an environment, and may be written in a variety of forms. Time-independent or memoryless master equations, in particular, can be cast in the well-known Lindblad form. Any time-local master equation, Markovian or non-Markovian, may in fact also be written in a Lindblad-like form. A diagonalisation procedure results in a unique, and in this sense canonical, representation of the equation, which may be used to fully characterize the non-Markovianity of the time evolution. Recently, several different measures of non-Markovianity have been presented which reflect, to varying degrees, the appearance of negative decoherence rates in the Lindblad-like form of the master equation. We therefore propose using the negative decoherence rates themselves, as they appear in the canonical form of the master equation, to completely characterize non-Markovianity. The advantages of this are especially apparent when more than one decoherence channel is present. We show that a measure proposed by Rivas et al. is a surprisingly simple function of the canonical decoherence rates, and give an example of a master equation that is non-Markovian for all times t>0, but to which nearly all proposed measures are blind. We also give necessary and sufficient conditions for trace distance and volume measures to witness non-Markovianity, in terms of the Bloch damping matrix.Comment: v2: Significant update, with many new results and one new author. 12 pages; v3: Minor clarifications, to appear in PRA; v4: matches published versio

    C/EBPβ-1 promotes transformation and chemoresistance in Ewing sarcoma cells.

    Get PDF
    CEBPB copy number gain in Ewing sarcoma was previously shown to be associated with worse clinical outcome compared to tumors with normal CEBPB copy number, although the mechanism was not characterized. We employed gene knockdown and rescue assays to explore the consequences of altered CEBPB gene expression in Ewing sarcoma cell lines. Knockdown of EWS-FLI1 expression led to a decrease in expression of all three C/EBPβ isoforms while re-expression of EWS-FLI1 rescued C/EBPβ expression. Overexpression of C/EBPβ-1, the largest of the three C/EBPβ isoforms, led to a significant increase in colony formation when cells were grown in soft agar compared to empty vector transduced cells. In addition, depletion of C/EBPβ decreased colony formation, and re-expression of either C/EBPβ-1 or C/EBPβ-2 rescued the phenotype. We identified the cancer stem cell marker ALDH1A1 as a target of C/EBPβ in Ewing sarcoma. Furthermore, increased expression of C/EBPβ led to resistance to chemotherapeutic agents. In summary, we have identified CEBPB as an oncogene in Ewing sarcoma. Overexpression of C/EBPβ-1 increases transformation, upregulates expression of the cancer stem cell marker ALDH1A1, and leads to chemoresistance

    Athena: A New Code for Astrophysical MHD

    Full text link
    A new code for astrophysical magnetohydrodynamics (MHD) is described. The code has been designed to be easily extensible for use with static and adaptive mesh refinement. It combines higher-order Godunov methods with the constrained transport (CT) technique to enforce the divergence-free constraint on the magnetic field. Discretization is based on cell-centered volume-averages for mass, momentum, and energy, and face-centered area-averages for the magnetic field. Novel features of the algorithm include (1) a consistent framework for computing the time- and edge-averaged electric fields used by CT to evolve the magnetic field from the time- and area-averaged Godunov fluxes, (2) the extension to MHD of spatial reconstruction schemes that involve a dimensionally-split time advance, and (3) the extension to MHD of two different dimensionally-unsplit integration methods. Implementation of the algorithm in both C and Fortran95 is detailed, including strategies for parallelization using domain decomposition. Results from a test suite which includes problems in one-, two-, and three-dimensions for both hydrodynamics and MHD are given, not only to demonstrate the fidelity of the algorithms, but also to enable comparisons to other methods. The source code is freely available for download on the web.Comment: 61 pages, 36 figures. accepted by ApJ

    Measuring Spinal Mobility Using an Inertial Measurement Unit System: a Reliability study in Axial Spondyloarthritis

    Get PDF
    The objectives of this study were to evaluate the reliability of wearable inertial motion unit (IMU) sensors in measuring spinal range of motion under supervised and unsupervised conditions in both laboratory and ambulatory settings. A secondary aim of the study was to evaluate the reliability of composite IMU metrology scores (IMU-ASMI (Amb)). Forty people with axSpA participated in this clinical measurement study. Participant spinal mobility was assessed by conventional metrology (Bath Ankylosing Spondylitis Metrology Index, linear version—BASMILin) and by a wireless IMU sensor-based system which measured lumbar flexion-extension, lateral flexion and rotation. Each sensor-based movement test was converted to a normalized index and used to calculate IMU-ASMI (Amb) scores. Test-retest reliability was evaluated using intra-class correlation coefficients (ICC). There was good to excellent agreement for all spinal range of movements (ICC > 0.85) and IMU-ASMI (Amb) scores (ICC > 0.87) across all conditions. Correlations between IMU-ASMI (Amb) scores and conventional metrology were strong (Pearson correlation ≥ 0.85). An IMU sensor-based system is a reliable way of measuring spinal lumbar mobility in axSpA under supervised and unsupervised conditions. While not a replacement for established clinical measures, composite IMU-ASMI (Amb) scores may be reliably used as a proxy measure of spinal mobility

    Dual-function cellulose composites for fluorescence detection and removal of fluoride

    Get PDF
    A biodegradable and robust fluorogenic cellulose material for simultaneous fluoride recognition and adsorption at environmentally significant levels is presented. The fluorescent modified cellulose (FMC) containing a boronic acid-based anthracene group as a fluorescent signaling unit displays a selective fluorescence enhancement with F−. On the other hand, Cl−, Br−, SO42−, H2PO4−and ClO4− did not induce significant changes in fluorescence. Furthermore, FMC shows excellent F− adsorption over a wide range of pH with a low dosage. Equilibrium studies demonstrate that the adsorption of F− follows the Langmuir model in an aqueous solution. While, adsorption kinetics were found to follow the pseudo-second-order model. The simplicity of the method and the ability to detect and remove fluoride in waste water is noteworthy given the problems associated with fluoride pollution in drinking water.</p

    Long-wavelength TCF-based fluorescence probes for the detection and intracellular imaging of biological thiols

    Get PDF
    Two ‘turn on’ TCF-based fluorescence probes were developed for the detection of biological thiols (TCF-GSH and TCFCl-GSH). TCF-GSH was shown to have a high sensitivity towards glutathione (GSH) with a 0.28 μM limit of detection. Unfortunately, at higher GSH concentrations the fluorescence intensity of TCF-GSH decreased and toxicity was observed for TCF-GSH in live cells. However, TCFCl-GSH was shown to be able to detect GSH at biologically relevant concentrations with a 0.45 μM limit of detection. No toxicity was found for TCFCl-GSH and a clear ‘turn on’ with good photostability was observed for the exogenous addition of GSH, Cys and HCys. Furthermore, TCFCl-GSH was used to evaluate the effects of drug treatment on the levels of GSH in live cells

    A Quantum Langevin Formulation of Risk-Sensitive Optimal Control

    Full text link
    In this paper we formulate a risk-sensitive optimal control problem for continuously monitored open quantum systems modelled by quantum Langevin equations. The optimal controller is expressed in terms of a modified conditional state, which we call a risk-sensitive state, that represents measurement knowledge tempered by the control purpose. One of the two components of the optimal controller is dynamic, a filter that computes the risk-sensitive state. The second component is an optimal control feedback function that is found by solving the dynamic programming equation. The optimal controller can be implemented using classical electronics. The ideas are illustrated using an example of feedback control of a two-level atom

    Allocating the Burdens of Climate Action: Consumption-Based Carbon Accounting and the Polluter-Pays Principle

    Get PDF
    Action must be taken to combat climate change. Yet, how the costs of climate action should be allocated among states remains a question. One popular answer—the polluter-pays principle (PPP)—stipulates that those responsible for causing the problem should pay to address it. While intuitively plausible, the PPP has been subjected to withering criticism in recent years. It is timely, following the Paris Agreement, to develop a new version: one that does not focus on historical production-based emissions but rather allocates climate burdens in proportion to each state’s annual consumption-based emissions. This change in carbon accounting results in a fairer and more environmentally effective principle for distributing climate duties
    • …
    corecore